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A new approach method of calculating the wall diffusional flows of the desired 
variables is proposed for the difference modeling of flow and heat transfer close 
to a solid surface at high Reynolds numbers. 

Experience in the numerical solution of Navier-Stokes or Reynolds equations shows that 
one of the basic difficulties in the difference modeling of the flow and heat transfer of 
a viscous liquid at a solid surface is the lack of economical and yet sufficiently well- 
founded methods of formulating the boundary conditions at the wall in the case of high Rey- 
nolds numbers. The use of the traditional conditions of adhesion of the liquid to the wall 
is very problematic in this case if the limited (in terms both of memory and speed) possi- 
bilities of modern computers are taken into account. The wall-function method, which is 
widely used at present (see [i], for example), is based on the use of a logarithmic wall law 
and so is only suitable for describing fully developed turbulent near-wall flows, for which 
local energy equilibrium of the turbulent pulsations may be assumed. It is obvious that, 
in many cases, this condition is not satisfied. This may be illustrated by the flow of a 
cylinder in a transverse flow of viscous liquid. As is known, such flow is characterized by 
a clearly expressed influence of Re and the degree of turbulence of the incoming flow (ex- 
ternal turbulence) on the position of the transition point from a laminar boundary layer de- 
veloping at the cylinde r surface to a turbulent state, and also on the point of flow break- 
away from the cylinder surface. Note that external turbulence not only affects the position 
of the flow transition and breakaway points but also determines the processes occurring in 
the boundary layer itself. In particular, the properties of laminar and turbulent flow con- 
ditions appear equally close to the forward stagnation point of the cylinder. 

Attempts to avoid the use of the wall-function method have been made in a number of 
works. Thus, the method developed in [2], which may conveniently be called the method of 
zero diffusion of the energy of turbulent pulsations (k) and its rate of dissipation (e) at 
the wall, is based on the representation of k and E in polynomial form: k = A1y 2 + A2y ~ + 
O(y~); e = B I + B2y + O(y2), where A i and B i are the coefficients of the polynomials; y is 
the distance from the normal to the wall. This method assumes that the gradients of k and 
E at the wall are zero (the subscript w denotes the flow parameters at the wall). Note that 
the condition (ak/ay) w = 0 is also adopted in the wall-function method; the condition (ae/ 
ay) w ~ 0, on the other hand, is more to be desired than actually found in practice. This 
primarily affects the accuracy of calculations of such important characteristics as the fric- 
tion ~w and heat flux qw at the wall. 

The accuracy with which ~w and qw are calculated may be improved by taking account of 
the near-wall diffusional transfer of the corresponding quantities in the viscous sublayer 
of the wall boundary layer, as proposed in [3] in developing the PSL procedure. The PSL pro- 
cedure is based on the assumption that, even for a compeltely elliptical calculation region, 
there is a thin "parabolic sublayer" (hence the abbreviation PSL) in the immediate vicinity 
of the wall, and the change in static pressure in the flow across this sublayer is negligibly 
small. Thus, the pressure inside the parabolic sublayer is determined on the basis of solving 
the problem in the part of the calculation region external to the sublayer. Hence, the 
velocity component normal to the wall inside the sublayer may be found in this case not from 
the corresponding equation of variation in the momentum, as in the wall-function method and 
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the method of zero diffusion of k and ~, but directly from the continuity equation. Accord- 
ing to the data of [3], the thickness of the sublayer is chosen here so as to be larger than 
the entire low-Reynolds (in terms of the turbulent Reynolds number ReT) region of flow. Note 
that, despite the simplicity of this approach, its realization in the difference solution of 
the initial system of Navier-Stokes or Reynolds equations is associated with definite diffi- 
culties, because in this case calculations must be performed on inscribed grids in the ellip- 
tical and parabolic (for the sublayer) regions, respectively. 

To eliminate the deficiencies intrinsic to the above methods, in the present work a new 
method of formulating the boundary conditions at the wall is proposed for solving problems 
involving flow around a body of arbitrary form at high Re, in both laminar and turbulent con- 
ditions; essentially, the method is to use the local-similarity method in calculating the 
diffusional flows of the desired variables in the wall cells of the calculation region in 
the difference procedure. Since the local-similarity method was developed for an initial 
system of equations in the boundary-layer approximation (see [4, 5], for example), the use 
of this method is justified only in the part of the calculation region adjacent to the wall, 
where there is no flow breakaway, i.e., from the stagnation point of the flow to the point 
of flow breakaway from the solid surface. 

The basic assumptions of the given method and the corresponding results are demonstrated 
preliminarily for the example of solving dynamic (calculating ~w) and then also thermal (cal- 
culating qw) problems in the case of laminar flow. Then the solution of the same problems is 
obtained for turbulent flow. The flow arriving at the body is assumed to be turbulent here; 
the flow from the stagnation point of the flow at the body surface to the transition point 
of the boundary layer to turbulent flow (according to the local Reynolds number Re x) is as- 
sumed to be laminar, but with a specified influence from the turbulence of the external flow 
(this flow is conventionally called pseudolaminar); the flow beyond the transition point is 
defined as completely turbulent, so that the well-known methods of specifying the boundary 
conditions - for example, the wall-function method mentioned above - may be used on this sec- 
tion of the solid surface. 

The boundary conditions at the wall formulated in this way allow the difference solution 
of the complete system of Navier-Stokes or Reynolds equations and energy equations to be ob ~ 
tained on the most general basis. In this analysis, the flow is assumed to be plane in both 
laminar and turbulent conditions, and the liquid is assumed to be incompressible with con- 
stant properties. The initial system of equations for the turbulent flow and heat transfer 
is closed by means of a two-parameter dissipative model of turbulence (k - e), although other 
models of turbulence of differential type may be used here, in principle. 

Laminar Conditions 

First, the dynamic problem is solved. Using a coordinate system fixed in the body, the 
initial equations of motion are written, in the boundary-layer approximation, in the form of 
the Folkner-Scan equation 

f " '  + ff" + ~(l  - f ' ~ )  = o, (1)  

where f'(~) = U/Ue; n = UeY/2r s = ~ uedx; B = (2S/Ue)due/ds; the subscript e denotes the 
external boundary of the boundary layer at the solid surface (N + =); the notation ( )' de- 
notes the first derivative with respect to q (the number of primes denotes the order of the 
derivative). 

The solution of Eq. (i) is constructed with the boundary conditions 

,1=0, /(o)=/'(o)=o; ~-~oo, f'(oo)~1 (2) 

for some specified value of the Folkner-Scan parameter 6, which, although it depends on the 
law of variation of the velocity component tangential to the solid surface Ue(X), is assumed 
to be constant for x = const. The constraint on the extent of the calculation region is de- 
termined by the parameter 8 = -0.1988, corresponding to the point of flow breakaway from the 
solid surface. In the stagnation point at the solid surface (let x = 0), the parameter $ = I. 
Then, when -0.1988 < ~ < i, the solution of Eq. (i) with the boundary conditions in Eq. (2) 
allows the dimensional value of the friction at the wall to be found 

~:*~, = t~ (&/ay)w = (t~u~/ Y 2 $ f  ) F (o). ( 3 ) 

Under t h e  a s s u m p t i o n  t h a t  t h e  p r e s s u r e  in  t h e  c a l c u l a t i o n  r e g i o n  o f  v a r i a t i o n  in  $ i s  
d e t e r m i n e d  f rom t h e  s o l u t i o n  o f  t h e  i n i t i a l  s y s t e m  o f  e q u a t i o n s  in  t h e  N a v i e r - S t o k e s  fo rm,  
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the dependence 8(x )  is found. By definition, ~ = (2S/Ue)due/ds. Using the velocity of the 
unperturbed flow U~ (here and below, the subscript ~ corresponds to parameters of the unper- 
turbed flow) and the size of the body in the flow L as the characteristic quantities, so that 
Re = U~L/~, the expression for ~ is rewritten in the form 

x 

0 

and hence, taking into account that the Bernoulli equation along the streamline coinciding 
with the solid surface gives 

Ue = [2 (poe - -  Pe)] ' /2, (4) 

where Pe is the static pressure and Poe is the stagnation pressure (at x = 0), it is found 
that 

= dpe x 
(Po~ - -  p~)-a/2 ~ (Po~ - -  p~)l / 2 dx. ( 5 ) dx 

0 

Note that, in principle, it is possible to determine u e from the solution of the Navier-Stokes 
equation; however, the numerical value of u e in this case depends on the size of the wall 
cell employed. The use of Eq. (4) seems preferable, since the pressure variation in the 
direction normal to the wall is extremely small at considerable distance from the wall, and 
hence depends weakly on the size of the calculation-region wall cells chosen in solving the 
Navier-Stokes equations. 

The solution procedure reduces to determining the distribution of friction over the 
solid surface of f"(0) at fixed ~, within the limits of the wall-cell step in the direction 
along the solid surface. The solution of Eq. (i) with the boundary conditions in Eq. (2) 
for f"(0; B) is not difficult. Values of f"(0; ~) have been given in numerous works (see 
[4], for example). In the calculations, the boundary value of the coordinate qe at which 
u/u e = 0.9999 (q + ~) is also found. It does not exceed qe = 6.2 when B = -0.1988. From Eq. 
(3), introducing the dimensionless friction Tw = %w*/(P U~2), where p is the density of the 
liquid, and taking account of Eq. (5), the following result is obtained 

x 

�9 = = 2 ' / ,  (po , -  ; , )  f" (po , -  (6)  
0 

The friction at the wall determined in this way is then used to calculate the diffusional 
flow of the velocity component u in the wall cells of the difference grid in constructing the 
algorithm for solving the initial system of Navier-Stokes equations over the whole calcula- 
tion region. Note that the constraint on the size Yz of the difference-grid cell closest 
to the wall follows from determining the self-similar coordinate q; taking account of Eq. 
(4), under the assumption that Pe = Pl; Poe : P01, it may be written in the form 

x 

Yx ~ me [ S [2 (Pox - -  P0]'/2 dx/[Re (P0x - -  Px)]] '/2, ( 7 ) 
0 

where  ~e c o r r e s p o n d s  t o  t h e  t h e o r e t i c a l  b o u n d a r y - l a y e r  t h i c k n e s s  q ~ ~. 

Now t u r n i n g  t o  t h e  f o r m u l a t i o n  o f  t h e  b o u n d a ry  c o n d i t i o n s  f o r  t h e  t e m p e r a t u r e ,  t h e  dimen-  
s i o n l e s s  t e m p e r a t u r e  T = (T* - Tw*) / (T~*  - TwO) i s  i n t r o d u c e d ,  where  an a s t e r i s k  d e n o t e s  a 
dimensional quantity; then, at the wall, T w : 0. The derivative of the temperature taken 
along the normal to the wall is in this case the dimensionless heat flux qw to the wall in 
the form of the Nusselt number Nu w = ~L/X = (aT/By) w. For more precise determination of Nu w 
and hence of the diffusional temperature flux at the wall, the local-similarity method must 
subsequently be used in solving the total energy equation in the calculation region, as in 
solving the dynamic problem. In the boundary-layer approximation, the energy equation takes 
the form 

0" + Pr /O '  = O. (8 )  

In Eq. (8), the function 0 is introduced in the same way as the dimensionless temperature T. 
The difference between 0 and T is that G, like the function f, depends on the self-similar 
coordinate U = ueY//2~s, where s = S uedx. The dependence f(n) is found from the solution of 
Eq. (i) with the boundary conditions in Eq. (2). The order of Eq. (8) may be reduced, to 
give 
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O' (0) = C exp [-- F (0)I, (9) 

where F ( 0 ) = P r S [ ( 0 ) d H  ; C i s  a c o n s t a n t .  
0 

The s o l u t i o n  of  Eq. (9) i s  sough t  w i th  t he  boundary c o n d i t i o n s  

0 = 0 ,  O(0)=0; n-~oo, O ( ~ ) - . 1  (10) 
( t h e  t e m p e r a t u r e  i s  assumed to  be c o n s t a n t  a t  t he  e x t e r n a l  boundary of  t he  boundary l a y e r ) .  

Using Eq. (10) ,  t he  c o n s t a n t  C in  Eq. (9) may be d e t e r m i n e d .  F i n a l l y ,  Eq. (9) t a k e s  t he  
form 

O' (~) =: ~,[t" exp [-- F (0)] d~] -1~ exp [-- F (~)], ( 11 ) 
0 

and hence it follows that when ~ = 0 

0 0 

The heat flux to the wall is now determined. In dimensionless form, it is written in 
terms of @'(0) as the Nusselt number Nu w = (ueL//2~s)@'(0). Taking account of the expression 
for 8 in __the Folkner-Scan equation, the Nusselt number may be brought to the form Nu w = 
[L@'(0)//Sv]/due/dx , where u e is determined from Eq. (4) and B from Eq. (5). Then the final 
relation obtained for Nu w is 

x 

Nu~/-]/Re = 0 '  (0) (Po~ - -  P~)'  /= [2 f (Poe - -  Pe) ' /= dx]  - ' 1 2  , (12) 
o 

and hence it follows that, at the stagnation point of the flow, when x = 0 (B = I), there 
is a singularity. Writing u e in the vicinity of the stagnation point as in the form u e = Bx, 
where B is the velocity gradient at the stagnation point, the result obtained for Nu w at this 
point is 

Nu~/Vgi7 = o '  (o), ( 13 ) 

where Re B = BLa/~ and B is found from the numerical solution of the system of Navier-Stokes 
equations in the calculation region. 

The derivative 0'(0) appearing in Eqs. (12) and (13) is determined from the solution of 
Eq. (ii) with the boundary conditions in Eq. (i0). For the stagnation point, with 8 = I, 
O'(0) depends on the Prandtl number Pr. The results of calculating 0'(0; Pr) for this point 
are given in [4], for example. The results of calculating O'(0; B; Pr) for 4.1988 < B ~ i 
are also known [5]. 

Thus, determining the heat flux to the body surface by the local-similarity method re- 
duces to finding 0'(0) as a function of ~ and Pr. Since the tables for O'(0; 8; Pr) are 
fairly unwieldy, the use of the following procedure is proposed. 

i. As a result of solving the dynamic problem, 8(x) and f"(0) are found for each wall 
cell of the calculation region; at the stagnation point, f"(0) = 1.2326, and O'(0) may be 
approximated by the formula: 0'(0) = 0.57Pr ~ 

2. Beyond the stagnation point, for the parameter 8 specified in each wall cell, the 
Cauchy problem for Eq. (i) is solved with the boundary conditions f(0) = f'(0) = 0; f"(0) is 
specified as a function of B and determined by interpolation in accordance with the calcula- 
tional data presented in [4]. 

3. Plotting the profile f(D) for the specified 8, 0'(0) is found from Eq. (ii). 

4. The heat flux to the wall is determined from Eq. (12) or Eq. (13) and then used to 
calculate the temperature field in solving the complete energy equation in the calculation 
region. 

Turbulent Conditions 

Suppose that the flow arriving at the body is turbulent. The turbulence of this flow 
is taken into account when using the local-similarity method by including additional terms in 
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the system of equations of motion and energy equations in the boundary-layer approximation, 
as compared with Eqs. (i) and (8); these terms characterize the transfer of turbulence from 
the external flow to the wall. In the coordinate system fixed in the body (the same nota- 
tion as for laminar flow is used here), the equation of change in momentum in combination 
with the continuity equation is written in the form of a modified Folkner-Scan equation 

~a~ [(I + ~d~) F] + fF + p(l --f") ~ O. (14) 

As noted above, if the turbulent viscosity ~T appearing in Eq. (14) is determined on the 
basis of the assumptions made in the dissipative model of turbulence, i.e., assuming that 
~T = Cu k2/E, it may be approximately assumed that k = y2 and e - e w - y in the viscous sub- 
layer of the wall boundary layer. This means that VT - Y" when y + 0 and ~T - y3 with in- 
crease in e on moving away from the wall so that e >> ew" At the same time, Bk/By ~ 0 and 
e - i/y in the completely developed turbulent (logarithmic) layer of the given flow. Hence 
VT - Y here. Since, it is difficult to predict in advance how the external flow turbulence 
will influence the structure of the given flow between the stagnation point and the transi- 
tion point from laminar to developed turbulent conditions (that is, in the region of pseudo- 
laminar flow as defined above), the simplest phenomenological model of turbulence for this 
type of flow will be used in establishing the dependence vT(y) in the pseudolaminar section 
[6]; in this model, the turbulent viscosity changes linearly with distance from the wall, 
that is 

X 

, , / ,  : ? ((4 Re/3) (k ju : ) . !  uedx] '/e 0, (15) 
0 

where ~ is a constant of the model. 

It is interesting to compare Eq. (15) with the formula for 9T = Cu k2/s Using the rela- 
tions for k and E specified by the wall-function method for developed turbulent flow in a 
logarithmic layer [i], it is found that 

x 

. (Ju,)~ (16) ~1~ = • [2Re k 2 uodx],/2 
0 

or 

~I~=~  ~ ~ t  ,~--C~01~] 
0 

Comparing Eq. (15) with Eqs. (16) and (17), the relation between the constant of the phenomeno- 

~g}~tl m~;~)~/~d3~h: ~nstan~s ;~2heH~::ip:~:emod;14?a~ be ;s~;bl~shed:iyg;,(~/2)I/2- 
= ~ E E2 -- E1 " = " ~ = " E2 = " E1 = 

1.44, the constant ~ is 0.268 or 0.24a E. With variation in ae from the minimum value oe = i 
to the usual value oe = 1.3 taken in the dissipative model, it follows that y = 0:24 and 0.31, 
respectively. Note that, according to experimental data for flow in the vicinity of the 
stagnation point of the flow at the surface of a blunt body, y = 0.17-0.2 [6]. 

As follows from Eq. (15), VT/9 is a function of q only when 
x 

(2kJu~) [ uAx = p, = const (18) 
0 

or taking account of Eq. (4) 
x 

P, = kc(Po~--Pe)-' I [2ipo~--' P.)] '/~dx" 

It is evident from Eq. (18) that there is an indeterminacy in calculating ~T at the stagna- 
tion point (~ = I). Resolving this by means of the representation u e = Bx, as in the case of 
laminar flow, 8T is determined at the stagnation point as ~T = ke/B" 

With dependences 8(x) and ~T(X) specified from the solution of the system of Reynolds 
equations, the solution of Eq. (14) is found with the boundary conditions in Eq. (2). If 
Eq. (15) is written as VT/~ = AN, where A = y(2~TRe/3) I/2, Eq. (14) takes the form 

(1 + ^ n ) U '  ~ ( A + f ) f " + P O - - f ' ~ )  = ~  ( 1 9 )  

The procedure for solving Eq. (19) with the boundary conditions in Eq. (2) reduces to cal- 
culating the function f(q) and its derivatives in searching for f"(0), so that ~ [f"(0)] = 
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I I - f'(~)l < 6, where 6 is the permissible error in the satisfaction of the boundary condi- 
tion f'(~) + i. The friction at the wall is determined from Eq. (6) on the basis of the 
result obtained for f"(0), and is then used in calculating the diffusional flow of the veloc- 
ity component u in the wall cells of the calculation grid, analogously as for laminar flow. 
The coordinate Yl of the calculation-grid cell closest to the wall is then determined from 
Eq. (7). Assuming that the diffusion of k at the wall is zero, it may be supposed that 
k I ~ k e (~ + ~). Then, using the dependence for v T adopted in the dissipative model of tur- 
bulence and Eq. (15), the dissipation rate e I at the point closest to the wall is determined 

~ =~ (3/2)i/2 C~k3/z/(?yO. (20)  

Note that Eq. (20) is identical to the dependence for e used in describing the state of local 
isotropy of the dissipating eddies. 

To solve the thermal problem, the energy equation is used, in the form (in the boundary- 
layer approximation) 

[1/Pr + (I/PrT) v~/v] @" q- [[ -b (1/PrT) o/on (v,/v)l o '  = o. (21) 

Taking account of Eq. (15), Eq. (21) takes the form 

where 

(9' O1) ~: C, exp [-- F T 01)], ( z 2 )  

n 
FT (~) = Pr .( (f § */Pr) {! + (Pr/Pr~), q1-1 d~; 

0 

CT ::  O' (O) =: 1/~.[j'exp..(--,IPrF~(~)d' 1. .)d~[' 
o o 

From the result for 0'(0), the heat flux to the wall is found in Nusselt-number form from Eqo 
(12) or Eq. (13). Overall, the procedure for solving the thermal problem in the case where 
the influence of external turbulence on the heat transfer is taken into account is not dif- 
ferent from the analogous solution procedure for laminar flow conditions. Note that the 
results of calculating the thermal flow at the stagnation point at the surface of a blunt 
body in the form Nuw//Re B (Re B = BL2/v, B is the velocity gradient at the stagnation point) 
are given in [6] for Pr = 0.73, i, Pr t = i, and A = u I/2 varying in the range 0.01 
A < i00. From the result obtained for Nu w at the wall, the diffusional temperature flow at 
the wall is determined by solving the Reynolds and energy equations over the whole calcula- 
tion region. 

NOTATION 

x, y, coordinates along the normal to the solid surface; N, self-similar coordinate; u, 
velocity component in the direction x, u = Uef'(n) ; U, characteristic velocity; k, kinetic 
energy of turbulent pulsations; e, energy dissipation rate of turbulent pulsations; T(x, y), 
@(N), temperature; p, pressure; p, density; L, characteristic dimension of body; ~, friction; 
q, heat flux; 6, Folkner-Scan parameter; ST, parameter determining the turbulent intensity in 
the wall layer; B, velocity gradient at the stagnation point; ~, dynamic viscosity; ~, kine- 
matic viscosity; ~, heat-transfer coefficient; I, thermal conductivity; VT, turbulent viscos- 
ity; ~, Karman constant; 7, A, constants of the phenomenological model of turbulence: C~, ae, 
Col, Cez, constants of the dissipative model of turbulence; Re, ROT, Rex, ReB, Reynolds num- 
bers: Re = U~L/v, Re T = k2/(ve), Re x = UeX/~ , Re B = BL2/v; Pr, Prandtl number; PrT, turbulent 
Prandtl number; Nu, Nusselt number. Indices: w, wall; ~, unperturbed flow; e, external bound- 
ary of boundary layer; 0, flow stagnation; i, first wall point of the difference grid; ( )I, 
derivative with respect to ~; *, dimensional value. 

1, 
2. 
3. 
4. 
5. 
6. 
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